Monitoring & Dashboard¶
Overview¶
The Monitoring & Dashboard component provides comprehensive observability and analytics capabilities for the AI Marketplace platform. It enables real-time monitoring, alerting, and visualization of system performance, resource usage, and business metrics.
Key Features¶
- 📊 Real-time Monitoring
- System performance metrics
- Resource utilization tracking
- API usage statistics
-
Cost monitoring
-
🔔 Alerting System
- Custom alert rules
- Multi-channel notifications
- Alert aggregation
-
Incident management
-
📈 Analytics Dashboard
- Customizable widgets
- Interactive visualizations
- Export capabilities
- Scheduled reports
Architecture¶
graph TD
A[Data Collectors] --> B[Time Series DB]
A --> C[Log Aggregator]
A --> D[Metrics Store]
B --> E[Dashboard Engine]
C --> E
D --> E
E --> F[Alert Manager]
E --> G[Visualization Layer]
F --> H[Notification Service]
Getting Started¶
Prerequisites¶
- Python 3.8+ for SDK usage
- Basic understanding of monitoring concepts
- API key for authentication
Quick Start¶
-
Install the SDK:
-
Initialize the client:
-
Create a dashboard:
-
Add widgets:
Best Practices¶
- Metric Collection
- Define clear metrics
- Set appropriate collection intervals
- Implement proper aggregation
-
Monitor collection overhead
-
Alert Configuration
- Set meaningful thresholds
- Use appropriate alert channels
- Implement alert grouping
-
Regular alert review
-
Dashboard Design
- Organize by functionality
- Use appropriate visualizations
- Implement proper filtering
- Regular updates
Advanced Features¶
Custom Metrics¶
# Define custom metric
client.create_metric(
name="custom_metric",
type="gauge",
description="Custom business metric",
labels=["environment", "service"]
)
# Record metric value
client.record_metric(
name="custom_metric",
value=42,
labels={"environment": "prod", "service": "api"}
)
Alert Rules¶
# Create alert rule
client.create_alert_rule(
name="high_error_rate",
condition="error_rate > 0.05",
duration="5m",
severity="critical",
channels=["email", "slack"]
)
Dashboard API¶
# Export dashboard
dashboard.export(format="pdf")
# Schedule report
dashboard.schedule_report(
frequency="daily",
format="pdf",
recipients=["[email protected]"]
)
Monitoring and Analytics¶
- System health metrics
- Performance indicators
- Cost analysis
- Usage patterns
Support and Resources¶
Related Components¶
- LLM Integration - For model performance monitoring
- Vector Database - For query performance tracking
- Agentic System - For agent behavior monitoring